Safety Engineering Intl.

HALO ${ }^{\text {TM }}$ Rollover Occupant Protection System - ISO 3471-2008 Test Report

Safety Engineering International submitted the HALO ${ }^{\text {™ }}$ to be tested under the ISO 3471:2008 standard, which specifies the performance requirements for metallic rollover protective structures (ROPS).

The test was conducted by Friedman Research Corporation
www.FriedmanResearch.com

HALO Rollover Occupant Protection System

ISO 3471-2008 Test Report: Ford F350 Dual Cab

www.FriedmanResearch.com

F-350 HALO: ISO 3471-2008 Test Report
Date: August 13, 2021

Vehicle

Type: Light duty truck
Manufacturer: Ford
Model Number: F350 crew cab

ROPS

Manufacturer: Safety Engineering International: High Attenuation Load Offset (HALO)

Information supplied by manufacturer.

Location of DLV: Orthogonal projection of $95^{\text {th }} \%$ ile male Hybrid III ATD in driver seat

Figure 1. Pre-test image

Test Results and Criteria

Lateral Loading	Attained	Min required	Max allowed
Max force	23400 N	9818 N	
Absorbed energy	750 J	709.5 J	
Max displacement	51.3 mm		250 mm
Vertical Loading			
Maximum force	32300 N	32100 N	117 mm
Max displacement	2.5 mm		
Longitudinal Loading			
Maximum force	10400 N	7909 N	450 mm
Max displacement	10.1 mm		

Temperature and Materials

The test was performed with ROPS and machine frame members soaked to 20 deg C (material properties defined at ambient temperatures)

The Charpy V-notch impact strength requirements for ROPS structural metallic members were tested on a specimen of size $10 \mathrm{~mm} \times 10 \mathrm{~mm}$. The absorbed energy was 40 J at $-40 \mathrm{deg} \mathrm{C}^{1}$

Nut property class: 8
Bolt property class: 8.8

[^0]www.FriedmanResearch.com

Force-deflection curve for loading test

Figure 2. Lateral Force v Displacement

Figure 3. Vertical Force v Displacement
www.FriedmanResearch.com

Figure 4. Longitudinal Force v Displacement

Photo of specimen

Figure 5. Post-Test Image

Attestation statement

The minimum performance requirements of ISO 3471:2008 were met in this test for a maximum machine mass of 2727 kg . Use of the Finite Element method is an accepted means for demonstrating compliance and performance of structures under static and dynamic loading environments to protect occupants. ${ }^{2,3,4,5}$

[^1]
[^0]: ${ }^{1}$ https://www.ssab.com/api/sitecore/Datasheet/GetDocument?productId=77213F04FD5D440080457225B1E273FD\&lan guage=en

[^1]: ${ }^{2}$ Federal Aviation Administration, AC 20-146A - Methodology for Dynamic Seat Certification by Analysis for Use in Parts 23, 25, 27, and 29 Airplanes and Rotorcraft, June 29, 2018
 ${ }^{3}$ European Standard, prEN 16303, Road restraint systems - Validation and verification process for the use of virtual testing in crash testing against vehicle restraint system, 2018
 ${ }^{4}$ Ray et al., NCHRP 22-24, Web-Only Document 179: Procedures for verification and validation of computer simulations used for roadside safety applications, March 2010
 ${ }^{5}$ Euro NCAP, Pedestrian Human Model Certification, Technical Bulletin 24, 2017

